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Developments in ultrashallow spreading resistance analysis
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Spreading resistance analysis on ultrashallow structures is complicated by the interaction of bevel
rounding with geometric effects associated with lateral boundaries. When a spreading resistance
probe is stepped from the original sample surface, across the rounded region at the bevel edge and
onto the bevel, the resistance increases. Some of the increase is the result of approaching the
lateral boundary represented by the bevel, and some is the result of increasing local sheet
resistance as the probes begin to move below the original surface. We remove the geometric effect
by solving the boundary value problem involving a sheet resistance which varies with distance along
the direction of probe travel. Having obtained the local sheet resistance, we assign a depth for each
point from profilometer data, and the usual depth-dependent analysis is used to obtain the resistivity
profile.
© 2002 American Vacuum Society. [DOI: 10.1116/1.1446454]

I. INTRODUCTION
The data reduction process in spreading resistance
analysis (SRA) is nearly always carried out using a
one-dimensional solution to Laplace’s equation, but
the reality is that it is a two-dimensional problem
because of the nonzero bevel angle. In the frequent
context of a shallow junction-isolated structure, the
potential distribution around each probe depends on
the logarithm of distance from the probe. This makes
the measured resistance sensitive to distant lateral
boundaries. A bevel can be well approximated as a
series of staircase steps and acts as a series of
lateral boundaries. The symmetry of current flow
between the two probes is thus distorted: the current
will ‘‘bulge’’ up the bevel toward a region of lower
sheet resistance, and be suppressed down the bevel.
The distortion exists whether the probes are on the
bevel or only approaching it. In ultrashallow structures
the bevel can therefore introduce serious errors in the
shape of a profile. Fortunately, the analysis of the
situation is simplified in ultrashallow structures
because the thickness is much less than the probe
contact radius. This means that the probes can be
assumed to make contact through the whole
thickness of the conducting sheet. We can therefore
consider sheet resistance rather than resistivity as the
unknown in the problem.

A second major complication in ultrashallow SRA is
rounding at the bevel edge. Careful procedures can
keep rounding to less than 10 nm vertical error, but
this approaches the scale of modern processes.
____________________________
a)Electronic Mail: dave@solecon.com

Resistance measurements in the rounded region are
made at fixed horizontal distance increments, but are,
of course, not at fixed depth increments. The standard
one-dimensional data reduction algorithms usually
require fixed depth increments, so it is necessary to
interpolate within the measured resistances to find
proper values for the analysis. But the bevel-induced
distortions discussed in the preceding paragraph are
most important in the vicinity of the bevel edge, so
they must be accounted for before interpolating for
constant depth increments.

There are other interferences affecting SRA, including
some which also result in changes in measured
resistance on the surface of a sample far from the
bevel edge. The most important one is seemingly
caused by surface or subsurface charges related to
incompletely activated implanted species.1 Crystal
damage introduced by the beveling process has been
mentioned frequently as a reason for the kind of bevel
edge proximity effect we discuss here.2 There are
nevertheless some structures in which the geometric
effect can completely account for observed behavior.

II. THE GEOMETRIC EFFECT
The geometric effect, sometimes referred to as the
bevel edge proximity effect or bevel edge anticipation,
is indicated by an increase in measured resistance as
the probes are stepped across the original surface
toward the beginning of the bevel. The effect is
important only in the frequent context of a junction-
isolated structure, where the resistance between two
probes is dependent on the logarithm of the distance
between them. Before discussing the general problem
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Fig. 1. Spreading resistance on the surface of a uniform implant with a
sheet resistance of 2370 Ω/sq., measured (symbols) and calculated
from Eq. (1) (solid line).

of such effects on a bevel, it is useful to look at the
solution for an abrupt boundary—a 90° bevel angle.

For two probes on the surface of an implanted wafer,
arranged parallel to a cleaved edge, the potential
distribution and resistance measured between them
can be readily found using the method of images. The
resistance is:3

R = (ℜ/π)[lnS-lna+ln√(S2+∆2)-ln∆], (1)

where ℜ is the sheet resistance, S is the probe
spacing, a the contact radius, and ∆ is twice the
distance from the probes to the boundary (the
distance to the images). This formula has been
confirmed by experiment. As an example, with probes
separated by 200 µm on a sample having uniform
sheet resistance of 2370 Ω/sq, resistances were
measured as a function of distance from a cleaved
edge. Fig. 1 shows the remarkable agreement
between the measured results and those calculated
from Eq. (1). The sample used here is one of those
(sample I5) provided for the IMEC spreading
resistance round robin4 in 1996. The junction depth is

Fig. 2. Arrangement of images in a spreading resistance measurement.

0.62 µm, and the sheet resistance is that given by
IMEC.

The general problem involving multiple boundaries
may be defined relative to the diagram of Fig. 2,
where a sheet of material is divided into N regions
having sheet resistance ℜ0 , ℜ1 , ℜ3 ,..., ℜN–1. To be
consistent with our assumption of a junction-isolated
structure, the sheet resistance must increase
monotonically from left to right. The two probes
separated by a distance S (solid circles) are centered
in one of the regions, and images of them (broken
circles) appear at symmetric distances beyond each
boundary. The regions have a common width ∆
corresponding to the horizontal step increment in the
spreading resistance measurement, so the images
are distant from the probes by ±∆, ±3∆, ±5∆, etc.

The potential on the positive probe in the presence of
a current source -I is:3

V = (Iℜ/2π)lnr, (2)

where r is the distance from the probe center to the
current source. The negative probe in the presence of
a current source +I has an equal potential but of
opposite sign. We can add up the contributions from
the real probes and all the image sources, divide out
the current, and obtain an expression for resistance.
The result for the measured resistance at location j is

Rmj = ∆V/I=(ℜj /π)[ln(S/a)+∑βi{ln√(S2+∆i
2)-ln∆i }], (3)

where the summation is over all the image pairs, βi is
the image strength, and ∆i is the distance from probe
to image:

∆i = {2(i-j)+1}∆ for images to the right, and ∆i = {2(j-i)-
1}∆ for images to the left of location j.

The first term in Eq. (3) is Rcj , the resistance in the
absence of any lateral boundaries—the resistance we
seek— and the remaining terms represent the
geometric effect. The image strength βi associated
with each pair of images is a dimensionless number
given5 by

βi = ±(ℜi+1-ℜi)/(ℜi+1+ℜi), (4)

where the negative sign is taken if the images are to
the left of the probes. At some risk, we ignore higher-
order images (images of images) because their
strength is the product of two or more β’s. Because
Rc differs from ℜ by only a constant, the β’s can be
written as functions of Rc. Using a basic rule of
differential calculus, we make a transformation to
logarithms: dR/R→d(lnR), and approximate the image
strength with
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βi ≅ ±0.5(lnRci+1-lnRci). (5)

Absorbing the terms in the curly brackets of Eq. (3),
and the ±0.5 of Eq. (5) into a coefficient

ξi = ±{ln√(S2+∆i
2)-ln∆i}/(2lnS/a), (6)

Eq. (3) can be rewritten

Rmj = Rcj[1+∑ξi(lnRci+1-lnRci)]. (7)

Taking logarithms of both sides, denoting lnR by Z,
and using the approximation ln(1+x)≅x for |x|<1, Eq.
(7) becomes

Zmj = Zcj+∑ξi(Zci+1-Zci). (8)

Equation (3) has thus been transformed into a set of
N linear equations in the N lnRc’s and can be solved
by standard methods. As an example, using N=5, the
matrix of coefficients in Eq. (8) is

Boundary conditions defining the spreading
resistance outside the region of interest have been
assumed to be

Zc-1 = Zc0  and  ZcN = ZcN-1+1. (9)

This last condition was chosen to give the matrix
above its symmetry, but other reasonable choices are
possible. The inverse of the matrix will exist if ξ0<0.5,
and this requires that ∆>2a.

III. BEVEL ROUNDING
Bevels for SRA are prepared by grinding on a rotating
plate of hard, carefully frosted glass loaded with very
fine diamond abrasive. The object is to produce a
bevel surface which is perfectly flat with no rounding
at the intersection of the bevel with the original wafer
surface, so that horizontal distance from the bevel
edge can be interpreted as proportional to depth
below the original surface. Because the sample being
beveled and the glass plate are somewhat resilient, a
small amount of rounding is almost inevitable.  Better
results are achieved with lighter weight loading on the
workpiece, but at the expense of longer grinding time.
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Fig. 3. Profilometer trace showing bevel rounding on a 4’ bevel.

A typical shallow angle bevel obtained with a diamond
abrasive of 0.05 µm average particle size is shown in
the profilometer trace of Fig. 3.

The nominal ‘‘bevel edge’’ is taken as the intersection
of trend lines laid on the flat regions on either side of
the edge, but it can be seen that at this point the
surface is nearly 8 nm below the original sample
surface. There is some material removal as far back
as 20 µm onto the sample surface, and the rounded
region extends an equivalent distance down the
bevel. The simple assumption of depth being
proportional to distance from the edge is clearly
invalid. The depth can, however, be read from the
profilometer data, and we can easily find locations
separated by constant depth increments.

IV. APPLICATION
An example of the effect of this analysis is shown in
Fig. 4, where the raw measured resistance (circles)
on the bevel of Fig. 3 is plotted vs distance from the
bevel edge. The resistance corrected for the
geometric effect using Eq. (8) (triangles) is also
shown. The sample is a boron implant with junction
depth about 80 nm, and sheet resistance of 169 Ω/sq
as measured with a four-point probe with a ‘‘D’’ head
loaded to 70 g. The figure shows a substantial (10%)
geometric effect at the bevel edge, increasing to more
than 20% as the implant tail is reached.

Having removed the geometric effect, we can now
find resistances (from the lower curve of Fig. 4) at
constant depth increments (from Fig. 3) and thereby
reconstruct the resistance vs depth file for the sample.
When the normal data reduction procedure is used to
find carrier concentration vs depth from the
reconstructed file, the profile of Fig. 5 results. The
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Fig. 4. Resistance vs distance from the bevel edge on a boron implant
having a sheet resistance of 169 Ω/sq. As measured (circles) and
corrected for the geometric effect (triangles).

sheet resistance calculated from the profile in Fig. 5 is
176 Ω/sq, in good agreement with the four-point
probe value, whereas a profile calculated from the
original resistance file results in a calculated sheet
resistance substantially higher.

V. SUMMARY
We have derived a scheme to account for the
asymmetry in current flow between spreading
resistance probes caused by lateral boundaries. The
major benefit is that resistances on a bevel can be
corrected to the values that would be measured on a
plane surface. This permits the usual one dimensional
data reduction process to operate in a valid
environment. The issue of bevel rounding has been
discussed, and the usefulness of accurate
profilometer data has been shown. Simply recording
resistances at sequential depth increments has been
shown to be valid if the resistances are first corrected
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Fig. 5. Carrier concentration for the sample of Fig. 4 after correction for
geometric effect and bevel rounding (triangles), and calculated from
the original resistance file (circles). The calculated sheet resistance is
176 Ω/sq. and 296 Ω/sq., respectively, while the four-point probe value
is 169 Ω/sq.

for the geometric effect. In our one example of a
shallow boron implant, the procedure results in
remarkably improved agreement between calculated
and four-point probe sheet resistances.
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